LZ2323H5

DESCRIPTION

LZ2323H5 is a $1 / 3$-type (6.0 mm) solid-state image sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately 320000 pixels (horizontal $542 \times$ vertical 582), the sensor probides a high resolution stable color image.

FEATURES

- Number of pixels : 512 (H) $\times 582$ (V)

Pixel pitch : $9.6 \mu \mathrm{~m}(\mathrm{H}) \times 6.3 \mu \mathrm{~m}(\mathrm{~V})$
Number of optically black pixels
: Horizontal; front 2 and rear 28

- Complementary color filters of $\mathbf{M g}, \mathrm{G}, \mathrm{Cy}$ and Ye
- Low fixed pattern noise and lag
- No sticking and no image distortion
- Blooming suppression structure
- Built-in output amplifier

1/3 type Color CCD Area Sensor for PAL

PIN CONNECTIONS

- Variable electronic shutter (1/50 to $1 / 10000$ s)
- Compatible with PAL standard
- Package : 16-pin SDIPICERDIP](WDIPO1 6-N-0500C)

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME	NOTE
RD	Reset transistor drain	
OD	Output transistor drain	
OS	Video output	
ϕ_{RS}	Reset transistor gate clock	
$\phi_{\mathrm{V} 1}, \phi_{\mathrm{V} 2}, \phi_{\mathrm{V} 3}, \phi_{\mathrm{V} 4}$	Vertical shift register gate clink	
$\phi_{\mathrm{H} 1}, \phi_{\mathrm{H} 2}$	Horizontal shift register gate clock	
OFD	Overflow drain	
PW	P type well	1
GND	Ground	
TI	Test terminal	
NC I , NC2	No connection	

NOTE :

1. Connect each pin to GND directly or through a capacitor larger than $0.047 \mu \mathrm{~F}$.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Output transistor drain voltage	Voo	0 to +18	v
Reset transistor drain voltage	VRD	0 to +18	v
Overflow drain voltage	Vom	o to +55	v
Test terminal, T_{1}	$V_{\text {T1 }}$	0 to +18	v
Reset gate clock voltage	$V_{\phi R S}$	-0.3 to +18	v
Vertical shift register clock voltage	$V_{\phi V}$	-9.0 to +18	v
Horizontal shift register clock voltage	$V_{\phi H}$	-0.3 to +18	v
Voltage difference between PW and vertical clock	$V_{\text {PW }}-V_{\phi} \mathrm{V}$	-27 to +0	v
Storage temperature	Tstg	-40 to +80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER			SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Operating ambient temperature			Topr		25.0		'c	
Output transistor drain voltage			Voo	14.5	15,0	16.0	V	
Reset transistor drain voltage			VRD		Vod		v	
Overflow drain voltage	When DC is applied		VOm	5.0	(adj.)	19.0	v	1
	When pulse is applied p-p level		$V_{\phi} \mathrm{OFD}$	22.0			v	2
Ground			GND		0.0		v	
P-well voltage			VFW	-9.0		$V_{\phi} \mathrm{VL}$	V	
Test terminal, T_{1}			$V_{T 1}$		Vod		v	
Vertical shift register clock		LOW level	$V_{\phi} V_{1 L}, V_{\phi V 2 L}$ V ϕ V3L, $v \phi$ V4L	-8.5	- 8.0	-7.5	v	
		INTERMEDIATE level	$V_{\phi} V_{11}, V_{\phi} V_{21}$ $V_{\phi} V_{31}, V_{\phi} V_{41}$		0.0		v	
		HIGH level	$\mathrm{V}_{\phi} \mathrm{V} 1 \mathrm{H}, \mathrm{V}_{\phi \text { V3H }}$	16.0	16.5	17.0	V	
Horizontal shift resister clock		LOW level	$\mathrm{V}_{\phi H 1 L} \mathrm{~V}_{\phi \text { H2L }}$	- 0.05	0.0	0.05	v	
		HIGH level	$\mathrm{V}_{\phi \mathrm{H} 1 \mathrm{H}}, \mathrm{V}_{\phi} \mathrm{H} 2 \mathrm{H}$	4.7	5.0	6.0	v	
Reset gate clock		LOW level	$V_{\phi \text { RSL }}$	0.0		Vro - 13,0	v	
		HIGH level	$V_{\phi} \mathrm{RSH}$	VRD-8.5		9.5	v	
Vertical shift register clock frequency			$f_{\phi} \vee V_{1}, f_{\phi} \vee 2$ $\mathrm{f}_{\phi} \vee \mathrm{f}_{3}, \mathrm{f}_{\phi} \mathrm{V}_{\mathbf{4}}$	I	15,63	1	kHz	
Horizontal shift register clock frequency			$\mathrm{f}_{\phi} \mathrm{H} 1, \mathrm{f}_{\phi} \mathrm{H} 2$		9.66		M Hz	
Reset aate clock freauency			f ¢ RS		9.66		M Hz	

NOTES :

1. When DC voltage is applied, shutter speed is $1 / 50$ seconds.
2. When pulse is applied, shutter speed is less than $1 / 50$ seconds

ELECTRICAL CHARACTERISTICS (Drive method : Field Accumulation)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, Operating conditions : typical values for the recommended operating conditions, Color temperature of light source : $3200 \mathrm{~K} / \mathrm{IR}$ cut-off filter (CM-500, 1 mmt)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE	
Photo response non-uniformity	PRNU			15	$\%$	2	
Carrier saturation	Vsat	400			mV	3	
Dark output voltage	Vdark		0.3	3.0	mV	1,4	
Dark signal non-uniformity	DSNU		0.6	2.0	mV	1,5	
Sensitivity	R	400	550		mV	6	
Smear ratio	SMR		0.009	0.016	$\%$	7	
Image lag	AI			1.0	$\%$	8	
Blooming suppression ratio	ABL	100				9	
Output transistor drain current	IOD		4.0	8.0	mA		
Output impedance	Ro		350		Ω		
Vector breakuo				7.0	$\%$	10	
Line crawling					3.0	$\%$	11
Luminance flicker					2.0	$\%$	12

. The standard output voltage is defined as 150 mV by the average output voltage under uniform illumination.

- The standard exposure level is defined when the average output voltage is 150 mV under uniform illumination.
. Vofd should be adjusted to the minimum voltage with that ABL satisfy the specification,

NOTES :

1. $\mathrm{Ta}:+60^{\circ} \mathrm{C}$
2. The image area is divided into 10×10 segments. l-he segment's voltage is the average output voltage of all the pixels within the segment. PRNU is defined by (Vmax Vmin)/Vo, where Vmax and Vmin are the maximum and the minimum values of each segment's voltage respectively, when the average output voltage Vo is 150 mV .
3. The output voltage measured at the carrier peak when the carrier signal reaches maximum.
4. The average output voltage under a non-exposure condition.
5. The image area is divided into $10 x 10$ segments. OSNU is defined by (Vdmax - Vdmin) under the non-exposure condition where Vdmax and Vdmin are the maximum and the minımum values of each segment's voltage, respectively, that is the average output voltage over all pixels in the segment.

6 The average output voltage when a 1000 lux light source attached with a 90% reflector is imaged by a lens of F4, f50 mm.
7 The sensor is adjusted to position a V/I O square at the center of image area where V is the vertical length of the image area. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the pixel voltage in the $V / I O$ square.
6 The sensor is exposed at the exposure level corresponding to the standard condition preceding non-exposure condition. Al is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
9 The sensor is adjusted to position a V/I O square at the center of image area. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
10 Observed with a vector scope when the color bar chart is imaged under the standard exposure condition.
11 The difference between the average output voltage of the $(M g+Y e),(G+C y)$ line and the $(M g+C y)(G+Y e)$ line under the standard exposure condition.
12 The difference between the average output voltage of the odd field and the even field.

PIXEL STRUCTURE

COLOR FILTER ARRAY

$(1,582)$

G	Mg	G	Mg	G
Cy	Ye	Cy	Ye	Cy
Cg	G	MMg	\mathbf{G}	MgMg
Cy	Ye	Cy	Ye	Cy
\mathbf{G}	$\mathbf{M g}$	\mathbf{G}	Mgg	GG
Cy	Ye	Cy	Ye	Cy

Mg	G	Mg	G	Mg
Ye	Cy	Ye	CyJy	Ye
G	Mg	G	Mgg	GG
Ye	Cy	Ye	Cy	Ye
Mg	G	Mglg	GG MgMg	
Ye	Cy	Ye	Cy/y	Ye

$(512,5 \mathrm{~S} 2)$

	G ©y Vg जy	Mg	G MgMg		$\begin{gathered} \hline \mathrm{G} \\ \mathrm{Cy} \\ \hline \end{gathered}$
		Ye	Cy	Ye	
		G	Mgg	GG	Mg
		Ye	Cyjy	Ye	Cy
Ist, 3rd	G	Mg	G	Mg	G
field [by	Ye	Cy	Ye	Cy

Mg	G	Mg	G	Mg
Ye	Cy	Ye	Cy	Ye
G	Mg	G	Mgy	Gt
Ye	Cy	Ye	Cy	Ye
Mg	G	Mg	G	Mg
Ye	Cy\%y	Ye	Cy	Ye

$(512,1)$

M NG DIAGRAM EXAMPLE

VERTICAL TRANSFER TIMING

Shutter speed $1 / 2000$ s

(1st, 3rd FIELD)

OS $-\downarrow$ L
(2nd, 4th FELD)

HD		
VD		
$\phi_{V_{1}}$		
$\phi_{\text {v2 }}$		
$\phi_{\text {v }}$		
$\phi \mathrm{va}$		
¢ ofd	$\underset{\substack{579}}{\square}$ $\Omega \\| \frac{1}{1}$	
Os	${ }^{580} 5{ }^{\text {S }}$	

HORIZONTAL TRANSFER TIMING

READOUT TIMING
(1st, 3rd FIELD)

(2nd, 4th FIELD)

SYSTEM CONFIGURATION EXAMPLE

